Nanomechanical squeezing with detection via a microwave cavity

نویسندگان

  • M. J. Woolley
  • A. C. Doherty
  • G. J. Milburn
  • K. C. Schwab
چکیده

We study a parametrically driven nanomechanical resonator capacitively coupled to a microwave cavity. If the nanoresonator can be cooled to near its quantum ground state then quantum squeezing of a quadrature of the nanoresonator motion becomes feasible. We consider the adiabatic limit in which the cavity mode is slaved to the nanoresonator mode. By driving the cavity on its red-detuned sideband, the squeezing can be coupled into the microwave field at the cavity resonance. The red-detuned sideband drive is also compatible with the goal of ground state cooling. Squeezing of the output microwave field may be inferred using a technique similar to that used to infer squeezing of the field produced by a Josephson parametric amplifier, and subsequently, squeezing of the nanoresonator motion may be inferred. We have calculated the output field microwave squeezing spectra and related this to squeezing of the nanoresonator motion, both at zero and finite temperature. Driving the cavity on the blue-detuned sideband, and on both the blue and red sidebands, have also been considered within the same formalism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong squeezing and robust entanglement in cavity electromechanics

We investigate nonlinear effects in an electromechanical system consisting of a superconducting charge qubit coupled to a transmission line resonator and a nanomechanical oscillator, which in turn is coupled to another transmission line resonator. The nonlinearities induced by the superconducting qubit and the optomechanical coupling play an important role in creating optomechanical entanglemen...

متن کامل

Synchronization of many nanomechanical resonators coupled via a common cavity field.

Using amplitude equations, we show that groups of identical nanomechanical resonators, interacting with a common mode of a cavity microwave field, synchronize to form a single mechanical mode which couples to the cavity with a strength dependent on the squared sum of the individual mechanical-microwave couplings. Classically this system is dominated by periodic behavior which, when analyzed usi...

متن کامل

Parametric coupling between macroscopic quantum resonators

Time-dependent linear coupling between macroscopic quantum resonator modes generates both a parametric amplification also known as a “squeezing operation” and a beam splitter operation, analogous to quantum optical systems. These operations, when applied properly, can robustly generate entanglement and squeezing for the quantum resonator modes. Here, we present such coupling schemes between a n...

متن کامل

Entangling a Nanomechanical Resonator with a Microwave Field

We show how the coherent oscillations of a nanomechanical resonator can be entangled with a microwave cavity in the form of a superconducting copla-nar resonator. Dissipation is included and realistic values for experimental parameters are estimated.

متن کامل

Noise squeezing in a nanomechanical Duffing resonator.

We study mechanical amplification and noise squeezing in a nonlinear nanomechanical resonator driven by an intense pump near its dynamical bifurcation point, namely, the onset of Duffing bistability. Phase sensitive amplification is achieved by a homodyne detection scheme, where the displacement detector's output, which has a correlated spectrum around the pump frequency, is down-converted by m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008